

1 / 22 Chainsulting Audit Report © 2020

Unicrypt

Uniswap LP Token Locking Contract v2

 SMART CONTRACT AUDIT
17.12.2020

Made in Germany by Chainsulting.de

2 / 22 Chainsulting Audit Report © 2020

Table of contents

1. Disclaimer .. 3
2. About the Project and Company ... 4

2.1 Project Overview .. 5
3. Vulnerability & Risk Level ... 6
4. Auditing Strategy and Techniques Applied .. 7

4.1 Methodology ... 7
4.2 Used Code from other Frameworks/Smart Contracts ... 8
4.3 Tested Contract Files .. 9
4.4 Metrics / CallGraph .. 10

4.5 Metrics / Source Lines .. 11
4.6 Metrics / Capabilities ... 12
4.7 Metrics / Source Unites in Scope .. 13

5. Scope of Work & Results .. 13
5.1 Manual and Automated Vulnerability Test ... 14
5.1.1 Wrong import of OpenZeppelin library .. 14

5.1.2 Checks-effects-interactions pattern ... 15
5.1.3 Fix Spelling and Grammatical Errors .. 16
5.2. SWC Attacks & Special Checks ... 17

6. Executive Summary ... 21
7. Deployed Smart Contract ... 22

3 / 22 Chainsulting Audit Report © 2020

1. Disclaimer

The audit makes no statements or warrantees about utility of the code, safety of the code, suitability of the business model, investment
advice, endorsement of the platform or its products, regulatory regime for the business model, or any other statements about fitness of
the contracts to purpose, or their bug free status. The audit documentation is for discussion purposes only.

The information presented in this report is confidential and privileged. If you are reading this report, you agree to keep it confidential,
not to copy, disclose or disseminate without the agreement of Unicrypt.network. If you are not the intended receptor of this document,
remember that any disclosure, copying or dissemination of it is forbidden.

Major Versions / Date Description
0.1 (09.12.2020) Layout and details (Metrics / Scope of work)
0.5 (10.12.2020) Automated Security Testing

Manual Security Testing
0.8 (11.12.2020) Adding of SWC, Special Checks
1.0 (12.12.2020) Final document (Summary and Recommendation)
1.5 (16.12.2020) Fixed issues
1.6 (17.12.2020) Added deployed contract address

4 / 22 Chainsulting Audit Report © 2020

2. About the Project and Company

Company address: NA (ANON)

Website: https://unicrypt.network/

GitHub: NA

Twitter: https://twitter.com/UNCX_token

Telegram: https://t.me/uncx_token

Etherscan (UNCX Token): https://etherscan.io/token/0xaDB2437e6F65682B85F814fBc12FeC0508A7B1D0

Medium: https://unicrypt.medium.com/

5 / 22 Chainsulting Audit Report © 2020

2.1 Project Overview

The Unicrypt platform allows yield farming virtually any ERC20 token. It provides safe vault contracts for other tokens to deposit the
farm rewards into, and a dApp thats targeted for mobile and desktop use with connections to all major wallets for users to farm their
favourite tokens on. Uncrypt is one of the major platforms for Proof of liquidity, which helps users find new pairs on uniswap that have
locked their liquidity (Uniswap LP Token). This means it is impossible for that liquidity to be pulled until the unlock date expires. For
taking part in this program, tokens are awarded a trust score, and are highly visible to investors searching on the platform for new
tokens.

6 / 22 Chainsulting Audit Report © 2020

3. Vulnerability & Risk Level

Risk represents the probability that a certain source-threat will exploit vulnerability, and the impact of that event on the organization or
system. Risk Level is computed based on CVSS version 3.0.

Level Value Vulnerability Risk (Required Action)
Critical 9 – 10 A vulnerability that can

disrupt the contract
functioning in a number of
scenarios, or creates a risk
that the contract may be
broken.

Immediate action to reduce risk level.

High 7 – 8.9 A vulnerability that affects
the desired outcome when
using a contract, or
provides the opportunity to
use a contract in an
unintended way.

Implementation of corrective actions as soon as
possible.

Medium 4 – 6.9 A vulnerability that could
affect the desired outcome
of executing the contract in
a specific scenario.

Implementation of corrective actions in a certain
period.

Low 2 – 3.9 A vulnerability that does
not have a significant
impact on possible
scenarios for the use of the
contract and is probably
subjective.

Implementation of certain corrective actions or
accepting the
risk.

Informational 0 – 1.9 A vulnerability that have
informational character but
is not effecting any of the
code.

An observation that does not determine a level of
risk

7 / 22 Chainsulting Audit Report © 2020

4. Auditing Strategy and Techniques Applied

Throughout the review process, care was taken to evaluate the repository for security-related issues, code quality, and adherence to
specification and best practices. To do so, reviewed line-by-line by our team of expert pentesters and smart contract developers,
documenting any issues as there were discovered.

4.1 Methodology

The auditing process follows a routine series of steps:

1. Code review that includes the following:
i. Review of the specifications, sources, and instructions provided to Chainsulting to make sure we understand the size,

scope, and functionality of the smart contract.
ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential

vulnerabilities.
iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources,

and instructions provided to Chainsulting describe.
2. Testing and automated analysis that includes the following:

i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and
how much code is exercised when we run those test cases.

ii. Symbolic execution, which is analysing a program to determine what inputs causes each part of a program to execute.
3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability,

security, and control based on the established industry and academic practices, recommendations, and research.
4. Specific, itemized, actionable recommendations to help you take steps to secure your smart contracts.

8 / 22 Chainsulting Audit Report © 2020

4.2 Used Code from other Frameworks/Smart Contracts
1. SafeMath.sol (0.6.0)
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SafeMath.sol
2. Ownable.sol (0.6.0)
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol
3. Context.sol (0.6.0)
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/GSN/Context.sol
4. EnumerableSet.sol (0.6.0)
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/EnumerableSet.sol

5. TransferHelper (0.6.0)
https://github.com/Uniswap/uniswap-lib/blob/master/contracts/libraries/TransferHelper.sol

9 / 22 Chainsulting Audit Report © 2020

4.3 Tested Contract Files

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or
otherwise, after the security review. You are cautioned that a different SHA-256 hash could be (but is not necessarily) an indication of
a changed condition or potential vulnerability that was not within the scope of the review

File Fingerprint (SHA256)
UniswapV2Locker.sol D10E293CD960B70FF407FED61717144FCBACFA57ADBAC11F11C5373533E1B471

10 / 22 Chainsulting Audit Report © 2020

4.4 Metrics / CallGraph

11 / 22 Chainsulting Audit Report © 2020

4.5 Metrics / Source Lines

12 / 22 Chainsulting Audit Report © 2020

4.6 Metrics / Capabilities

Solidity Versions
observed

🧪 Experimental
Features

💰 Can Receive
Funds

🖥 Uses
Assembly

💣 Has Destroyable
Contracts

0.6.12 yes no
(0 asm blocks) no

📤 Transfers ETH ⚡ Low-Level Calls 👥 DelegateCall 🧮 Uses Hash Functions 🔖 ECRecover 🌀 New/Create/Create2

yes no no no no no

13 / 22 Chainsulting Audit Report © 2020

4.7 Metrics / Source Unites in Scope

Type File Logic
Contracts Interfaces Lines nSLOC Comment

Lines
Complex.
Score Capabilities

📝🔍 contracts-
v2/UniswapV2Locker.sol 1 4 421 403 95 218 💰📤🔆

📝🔍 Totals 1 4 421 403 95 218 💰📤🔆

5. Scope of Work & Results

The UniCrypt team provided us with the files that needs to be tested. The scope of the audit is UniswapV2Locker.sol contract with its direct imports.

The team put forward the following assumptions regarding the security of the UniswapV2Locker.sol Audit contract:

• After locking period ends, tokens are possible to withdraw
• Unicrypt (Deployer) is not able to withdraw/ steal locked tokens
• Everything is working as it supposed to be

The main goal of this audit was to verify these claims and check the overall security of the codebase.

Old Unicrypt V1 Locker Contract:
https://etherscan.io/address/0x17e00383a843a9922bca3b280c0ade9f8ba48449#code

14 / 22 Chainsulting Audit Report © 2020

5.1 Manual and Automated Vulnerability Test

CRITICAL ISSUES

During the audit, Chainsulting‘s experts found no Critical issues in the code of the smart contract.

HIGH ISSUES

During the audit, Chainsulting’s experts found no High issues in the code of the smart contract.

MEDIUM ISSUES

5.1.1 Wrong import of OpenZeppelin library
Severity: MEDIUM
Status: FIXED
File(s) affected: UniswapV2Locker.sol

Attack / Description Code Snippet Result/Recommendation
In the current
implementation, OpenZeppelin
files are added to the repo.
This violates OpenZeppelin’s
MIT license, which requires the
license and copyright notice to
be included if its code is used.
Moreover, updating code
manually is error-prone.

NA We highly recommend using npm (import
"@openzeppelin/contracts/..) in order to guarantee
that original OpenZeppelin contracts are used with
no modifications. This also allows for any bug-fixes
to be easily integrated into the codebase.

15 / 22 Chainsulting Audit Report © 2020

LOW ISSUES

5.1.2 Checks-effects-interactions pattern
Severity: LOW
Status: FIXED
File(s) affected: UniswapV2Locker.sol

Attack / Description Code Snippet Result/Recommendation
Potential violation of Checks-
Effects-Interaction pattern in
UniswapV2Locker.lockLPToke
n(address,uint256,uint256,addr
ess payable,bool,address
payable): Could potentially
lead to re-entrancy
vulnerability.

Line: 145

function lockLPToken (address _lpToken, uint256
_amount, uint256 _unlock_date, address payable
_referral, bool _fee_in_eth, address payable
_withdrawer) public payable {

OpenZeppelin has it’s own mutex implementation
you can use called ReentrancyGuard. This library
provides a modifier you can apply to any function
called nonReentrant that guards the function with a
mutex.
View the source code for the OpenZeppelin
ReentrancyGuard library here:
https://github.com/OpenZeppelin/openzeppelin-
solidity/blob/master/contracts/utils/ReentrancyGuard
.sol
Keep in mind that a nonReentrant function should
be external. If another function calls the
nonReentrant function it is no longer protected.

function lockLPToken (address _lpToken, uint256
_amount, uint256 _unlock_date, address payable
_referral, bool _fee_in_eth, address payable
_withdrawer) public payable nonReentrant {

16 / 22 Chainsulting Audit Report © 2020

INFORMATIONAL ISSUES

5.1.3 Fix Spelling and Grammatical Errors
Severity: INFORMATIONAL
Status: FIXED
File(s) affected: UniswapV2Locker.sol

Attack / Description Code Snippet Result/Recommendation
Language mistakes were
identified in the messages in
the codebase. Fixing these
mistakes can help improve the
end-user experience by
providing clear information on
errors encountered, and
improve the maintainability and
auditability of the codebase.

Line: 167
require(msg.value == ethFee, 'Fee not met');

Line 249:
require(_amount > 0, 'Zero withdrawl');

Keep the capitalization of letters consistent
require(msg.value == ethFee, 'FEE NOT MET');

Fix spelling error
require(_amount > 0, 'ZERO WITHDRAWAL');

17 / 22 Chainsulting Audit Report © 2020

5.2. SWC Attacks & Special Checks

ID Title Relationships
Test

Result

SWC-131	

Presence	of	unused	variables	
CWE-1164:	Irrelevant	Code	 • ✅"#$ 	

SWC-130	

Right-To-Left-Override	control	
character	(U+202E)	

CWE-451:	User	Interface	(UI)	Misrepresentation	of	Critical	Information	 • ✅"#$ 	

SWC-129	

Typographical	Error	
CWE-480:	Use	of	Incorrect	Operator	 • ✅"#$ 	

SWC-128	

DoS	With	Block	Gas	Limit	
CWE-400:	Uncontrolled	Resource	Consumption	 • ✅"#$ 	

SWC-127	

Arbitrary	Jump	with	Function	
Type	Variable	

CWE-695:	Use	of	Low-Level	Functionality	 • ✅"#$ 	

SWC-125	

Incorrect	Inheritance	Order	
CWE-696:	Incorrect	Behavior	Order	 • ✅"#$ 	

SWC-124	

Write	to	Arbitrary	Storage	
Location	

CWE-123:	Write-what-where	Condition	 • ✅"#$ 	

SWC-123	

Requirement	Violation	
CWE-573:	Improper	Following	of	Specification	by	Caller	 • ✅"#$ 	

18 / 22 Chainsulting Audit Report © 2020

ID Title Relationships
Test

Result

SWC-122	

Lack	of	Proper	Signature	
Verification	

CWE-345:	Insufficient	Verification	of	Data	Authenticity	 ✅"#$ 	

SWC-121	

Missing	Protection	against	
Signature	Replay	Attacks	

CWE-347:	Improper	Verification	of	Cryptographic	Signature	 ✅"#$ 	

SWC-120	

Weak	Sources	of	Randomness	
from	Chain	Attributes	

CWE-330:	Use	of	Insufficiently	Random	Values	 • ✅"#$ 	

SWC-119	

Shadowing	State	Variables	
CWE-710:	Improper	Adherence	to	Coding	Standards	 • ✅"#$ 	

SWC-118	

Incorrect	Constructor	Name	
CWE-665:	Improper	Initialization	 • ✅"#$ 	

SWC-117	

Signature	Malleability	
CWE-347:	Improper	Verification	of	Cryptographic	Signature	 • ✅"#$ 	

SWC-116	

Timestamp	Dependence	
CWE-829:	Inclusion	of	Functionality	from	Untrusted	Control	Sphere	 • ✅"#$ 	

SWC-115	

Authorization	through	tx.origin	
CWE-477:	Use	of	Obsolete	Function	 • ✅"#$ 	

SWC-114	

Transaction	Order	Dependence	 CWE-362:	Concurrent	Execution	using	Shared	Resource	with	Improper	
Synchronization	('Race	Condition')	 • ✅"#$ 	

19 / 22 Chainsulting Audit Report © 2020

ID Title Relationships
Test

Result

SWC-113	

DoS	with	Failed	Call	
CWE-703:	Improper	Check	or	Handling	of	Exceptional	Conditions	 • ✅"#$ 	

SWC-112	

Delegatecall	to	Untrusted	Callee	
CWE-829:	Inclusion	of	Functionality	from	Untrusted	Control	Sphere	 • ✅"#$ 	

SWC-111	

Use	of	Deprecated	Solidity	
Functions	

CWE-477:	Use	of	Obsolete	Function	 • ✅"#$ 	

SWC-110	

Assert	Violation	
CWE-670:	Always-Incorrect	Control	Flow	Implementation	 • ✅"#$ 	

SWC-109	

Uninitialized	Storage	Pointer	
CWE-824:	Access	of	Uninitialized	Pointer	 • ✅"#$ 	

SWC-108	

State	Variable	Default	Visibility	
CWE-710:	Improper	Adherence	to	Coding	Standards	 • ✅"#$ 	

SWC-107	

Reentrancy	
CWE-841:	Improper	Enforcement	of	Behavioral	Workflow	 • ✅"#$ 	

SWC-106	

Unprotected	SELFDESTRUCT	
Instruction	

CWE-284:	Improper	Access	Control	 • ✅"#$ 	

SWC-105	

Unprotected	Ether	Withdrawal	
CWE-284:	Improper	Access	Control	 • ✅"#$ 	

SWC-104	

Unchecked	Call	Return	Value	
CWE-252:	Unchecked	Return	Value	 • ✅"#$ 	

20 / 22 Chainsulting Audit Report © 2020

ID Title Relationships
Test

Result

SWC-103	

Floating	Pragma	
CWE-664:	Improper	Control	of	a	Resource	Through	its	Lifetime	 • ✅"#$ 	

SWC-102	

Outdated	Compiler	Version	
CWE-937:	Using	Components	with	Known	Vulnerabilities	 • ✅"#$ 	

SWC-101	

Integer	Overflow	and	Underflow	
CWE-682:	Incorrect	Calculation	 • ✅"#$ 	

SWC-100	

Function	Default	Visibility	
CWE-710:	Improper	Adherence	to	Coding	Standards	 • ✅"#$ 	

	

 •

1
After locking period ends, tokens
are possible to withdraw

We deployed the contract in our test network and tried the withdrawal
after the locking period ends. Result: it was possible • ✅"#$

2
Unicrypt (Deployer) is not able to
withdraw/ steal locked tokens

We deployed the contract in our test network and tried to steal locked
token funds with the deployer address. Result: it was not possible • ✅"#$

21 / 22 Chainsulting Audit Report © 2020

6. Executive Summary

The smart contract are written as simple as possible and also not overloaded with unnecessary functions, these is greatly benefiting
the security of the contract. It correctly implemented widely-used and reviewed contracts from OpenZeppelin and for safe
mathematical operations. The main goal of the audit was to verify the claims regarding the security of the smart contract (see the
scope of work section). According to the code, the implementation of the locking functions consider all security checks for a safe
locking and withdrawal of UniswapV2Pair Token.
Both claims appear valid. During the audit, no critical or high issues were found after the manual and automated security testing.

Edit: The Unicrypt Team reacted promptly on our findings and fixed all bugs.

22 / 22 Chainsulting Audit Report © 2020

7. Deployed Smart Contract

Deployed Unicrypt Contracts (Mainnet)

UniswapV2Locker.sol

https://etherscan.io/address/0x663A5C229c09b049E36dCc11a9B0d4a8Eb9db214#code (approved)

